
爬虫入门教程

404 student

零、写在前面

爬虫是个好东西，它可以用来搜集数据、快速操作、重复操作等等。简单来说，爬虫相当于一只在浏览

器上面爬的虫子，把本来应该人手干的事情全干完了。

最简单的爬虫是数据获取型爬虫，不需要做什么操作，只用获取网页中的内容。复杂一点的就需要爬虫

来做点操作，比如登录啥的。

本教程源自于大一下《程序设计实习》课程笔记，我觉得爬虫还是有点意思，想着复习一下，去爬一爬

别的网站。大家千万不要爬我的网站啊（哭）

前置要求：有python即可。

一、基本思路

首先我们抛开所有算法，只谈思路。

第一步是找出我们需要的URL（网址），第二步是访问到URL对应的HTML源代码。找到源代码以后，第
三步是找到我们需要的元素遵循什么样的格式，然后用正则表达式或者其他方法把这些元素挑出来。

接下来我们就一个一个讲解它们是怎么实现的。

二、找出URL
找出URL，目标是找到我们需要的那个网址。这一步是最简单的，比如说你要爬我的网站，只需要知道
我的网站的网址即可。有的网站的网址就很复杂，而且经常会随机性变化。比如我们要从某搜索引擎中

爬一些图片下来，就需要先进入搜索引擎，搜索目标关键词，然后进入图片栏，把这段网址copy下来即
可。

举个例子，我想从BING搜索引擎爬几张好看的小猫图片，只需在BING中搜一下“小猫”，在进入图片专
区，找到对应的网址，我找到的是 https://cn.bing.com/images/search?q=小猫&form=HDRSC2&first=1 。

那如果想要爬别的图片，只要把网址中的“小猫”换成别的关键词就行了。

三、访问URL，获取源代码
爬虫的第一步，就是要让我们的程序被浏览器误认为是真人，不然它不会让我们爬。为了成功访问

URL，就是需要写一个这样的函数： def getHtml(url) ，参数是指定的网址，返回的是该网址的网页源

代码。有几种方法实现：

1. requests库（不推荐）

requests库是python中用于发送HTTP请求的第三方库，可以通过 pip install requests 安装，然后

用 import requests 导入。

这个库有个关键的函数： requests.get(url, headers) ，其中url是网址；headers是请求头，是HTTP请
求和响应的重要部分，没有请求头，就没法访问了；返回的是一个 Response 对象，包括响应头、响应状

态码、响应内容等等。稍微了解一下请求头：它以键值对的形式存在，传递了这个HTTP的一些关键信
息。

我们作为爬虫，自然是需要捏造一个请求头。我直接给出一个请求头（其实是我不知道别的）：

fakeHeaders = {'User-Agent':

 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) \

 AppleWebKit/537.36 (KHTML, like Gecko) \

 Chrome/81.0.4044.138 Safari/537.36 Edg/81.0.416.77',

 'Accept': 'text/html, application/xhtml+xml, */*'}

仔细分析一下这个请求头： User-Agent 是告诉服务器我们使用的浏览器和操作系统的信息。至于值：

值 含义

 Mozilla/5.0 历史遗留字段，现代浏览器都有这个标识

 Windows NT 10.0; Win64; x64 运行系统是 Windows 10 64位系统

 AppleWebKit/537.36 浏览器引擎（Chrome/Edge/Safari都使用它）

 Chrome/81.0.4044.138 基于 Chromium 的浏览器（如Chrome或Edge）

 Safari/537.36 兼容 Safari 的渲染引擎

 Edg/81.0.416.77 表示这是 Microsoft Edge 浏览器（版本 81）

 Accept 是告诉服务器，客户端接受哪些类型的数据。 text/html 在最前面，表示优先接受html格式的数
据； application/xhtml+xml 表示也可以接受xhtml格式； */* 表示如果没有前两种，任何数据我们都能

接受。

虚拟一个请求头，主要有三点好处：

避免被反爬虫拦截：某些网站会检查 User-Agent ，如果是Python的默认UA，会拒绝响应。
模拟真实用户访问：有些网站依赖 Accept 类型返回不同内容。

兼容性：部分网站依赖 User-Agent 判断浏览器类型，如果UA不正确，可能导致加载异常。

不知道这些都没关系，直接用就好了。

然后便可以用这个请求头访问了，使用一个变量来接住返回的对

象： r = requests.get(url, fakeHeaders) ，并且确保网页编码 r.encoding 正确，然后就可以获取源代

码了。

当然，最好加一个错误处理：如果无法访问，输出报错信息。最后的整体代码长这样：

def getHtml(url):

 import requests

 fakeHeaders = {'User-Agent':

 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) \

 AppleWebKit/537.36 (KHTML, like Gecko) \

 Chrome/81.0.4044.138 Safari/537.36 Edg/81.0.416.77',

 'Accept': 'text/html, application/xhtml+xml, */*'}

 try:

 r = requests.get(url, headers = fakeHeaders)

 r.encoding = r.apparent_encoding

 return r.text # 返回了整个html源代码

 except Exception as e:

 print(e) # 输出报错信息

 return ""

requests库速度快，安装简单，分发容易，但是容易被反爬，并且不能获取包含javascript生成的动态网
页。还好我们还有两种方法。

2. selenium库（不推荐）

这个方法又慢又容易反爬，看看得了。

先 pip install selenium ，然后下载chrome浏览器或firefox浏览器，此外还需
要 chromedriver.exe 或 geckodriver.exe ，这里是下载方法。

然后我就直接挂代码了。

https://blog.csdn.net/m0_49449205/article/details/123971402?spm=1001.2014.3001.5501

def getHtml(url):

 from selenium import webdriver

 from selenium.webdriver.chrome.options import Options

 from selenium.webdriver.chrome.service import Service

 options = Options() # 浏览器选项

 # 等价于 options = webdriver.chrome.options.Options()

 options.add_argument('—headless') # 规定chrome浏览器隐身模式运行

 options.add_argument('--disable-gpu')

 # 禁止chrome使用gpu加速, 能快点

 service = Service(executable_path='./chromedriver.exe')

 driver = webdriver.Chrome(service=service, options=options)

 # driver就是个chrome浏览器, 需要下载安装chrome驱动器chromedriver.exe

 driver.get(url) # 浏览器装入网页

 html = driver.page_source

 driver.close()

 driver.quit()

 return html

3. pyppeteer库（好用！）

讲半天终于讲重点了。

谷歌公司推出了一款编程工具叫puppeteer，用于控制Chrome浏览器。一位日本工程师以此为基础，推
出了Python版本，叫pyppeteer，这里是pyppeteer的官网。

它的工作原理和selenium一样，是这样的：先启动一个浏览器Chromium，装入网页；这时用浏览器可
以获取网页源代码，甚至可以向浏览器发送命令，实现键盘输入、鼠标点击等操作。

要使用pyppeteer，首先要 pip install pyppeteer ，注意python版本不低于3.6。然后必须下载特殊版本
的谷歌浏览器Chromium，并记住它的位置。

在具体实现之前，首先要介绍一个很重要的知识：协程。

协程可以在单个线程内实现并发执行，并且切换由程序控制，而非操作系统调度。它有如下性质：

非抢占式：通过 await 让出执行权，而不是强制中断。

协作式调度：协程之间要显示切换。

适合I/O密集型任务：比如网络请求，文件读写等。

关于协程的实现，有几个重要的关键字和函数：

 async ：声明一个函数为协程函数（异步函数）： async def func() 。

 await ：挂起当前协程，等待另一个协程操作完成。

https://pypi.org/project/pyppeteer

 asyncio.run(一个协程函数) ：创建事件循环，负责调度协程的运行。

pyppeteer中所有函数都是协程函数，调用时都要在前面加 await ，这也是新手最容易错的地方。忘记

加协程会这样报错：

Runtime Warning: coroutine 'XXX' was never awaited.

OK，了解了pyppeteer和协程，就要用它来获取网页了。基本的思路是：先创建一个事件循环，然后让
获取网页的函数一直在这个循环中运行即可。也就是：

def getHtml(url):

 import asyncio

 import pyppeteer as pyp

 async def asGetHtml(): # 稍后实现

 loop = asyncio.new_event_loop() # 创建新事件循环

 asyncio.set_event_loop(loop) # 把这个循环设置为当前线程

 html = loop.run_until_complete(asGetHtml(url))

 return html

现在的任务就是把实际获取网页源代码的函数写出来。基本的思路是：先打开浏览器，启动对应页面，

设置好反反爬措施，然后爬取。因为很多函数大家不了解，我先把代码给出来，再解释一下它在干什

么：

async def asGetHtml(url):

 browser = await pyp.launch(headless = False, executablePath = "D:\chromium\chrome-win\chrome

 page = await browser.newPage()

 await page.setUserAgent("Mozilla/5.0 (Windows NT 6.1; Win64; x64) AppleWebKit/537.36 (KHTML,

 await page.evaluateOnNewDocument("()=>{Object.defineProperties(navigator,{webdriver:{get:()=

 await page.goto(url)

 text = await page.content()

 await browser.close()

 return text

是不是很抽象？我一行一行解释：

首先是 launch 函数，它的作用就是打开浏览器，参数 headless 表示要不要用无痕模式打

开， executablePath 是之前下载的Chromium浏览器的位置，还有一个参数 userdataDir 是指定用于存

放临时文件的文件夹位置，用于防止莫名其妙的错误，当然也可以没有。

变量 page 就是浏览器打开一个新界面。

 setUserAgent 之前讲过了，就是创建虚拟头。

 navigator.webdriver 是浏览器暴露的一个属性，一般用这些奇奇怪怪的库访问浏览器时，这个值会为

True，网站可以用这种方法反爬。而我们技高一筹，使用 Object.defineProperties 重新定义上述属性，

让它始终为False。

后面的代码就很好理解了，先登入指定url，再获取网页源代码的字符串 page.content() ，最后关闭浏览

器。至于完整代码就不给了，两端拼起来就好了。

这种方法大概是 requests.get() 速度的五分之一，但是有反反爬技术，就比较稳定。

四、分析并提取网页内容

既然我们获得了整个网页的html文件，现在就只剩最后一步了：找到我们需要的内容。依然有三种方
式：

1. 正则表达式（速度最快）

我的网站里暂时没有html教程，虽然我写了一个入门教程，但是我觉得写的太烂了，等我学更深入一些
再发。现在我必须简单介绍一下html：

html中的元素，一般是有两个对应的tag包裹起来一个元素（也有可能只有一个tag），前面的tag会有一
些属性，形如： <X attr1 = "xxx" attr2 = "yyy" ...>正文</X> 。同时，tag可以嵌套。

正则表达式很好理解，只要我知道我想要的东西，它对应的字符串长啥样，就可以用正则表达式拿出

来。比如：我用下面这个正则表达式：

pt = r'<td class="n">([^<]*)</td><td><span class[^<*]> ([^<]*)</td>'

就可以提出这些括号里的内容，如果看不懂的话，我以后介绍一下正则表达式（因为我现在也不会）。

简单来说， [^<]* 可以匹配字符串中的任何字符，括号括起来的部分会被变量pt接收到。

问题来了：我怎么知道我要的部分对应的字符串长啥样呢？这也简单，打开浏览器，右键你需要的元

素，点击“检查”，浏览器就会进入开发者模式，能看到网页源代码。

2. BeautifulSoup库（最推荐）

这个方法虽然速度不及正则表达式，但是架不住它简单好用，不用记正则表达式那些繁琐的规则。先安

装 pip install beautifulsoup4 ，用 import bs4 导入。

BeautifulSoup的使用逻辑是：一个字符串可以变成BeautifulSoup对象X，这个对象就会
有 find ， find_all 等方法，可以找到对应的tag对象；还会有 text 属性，对应这个对象的正文（就是

两个tag包裹的内容）。

举个例子吧，比如对于下面这个字符串：

str = '''

 <div id="siteHeader" class="wrapper">

 <h1 class="logo">

 <div id="topsearch">

 <ul id="userMenu">

 首页

 </div>

 </div>

'''

soup = bs4.BeautifulSoup(str, "html.parser")

print(soup.find("li").text) # 首页

对于html文件，也能这样做：

soup = bs4.BeautifulSoup(open("文件位置", "r", encoding="utf-8"), "html.parser")

接下来介绍一下两个find方法怎么用： goals = soup.find("tag名字", attrs={···}) ，有两个参数，前者

是你要找的tag，后者是要求这个tag有某种特殊属性。比
如： diva = soup.find("div", attrs={"id":"synoid"}) ，就是寻找一

个 <div id="synoid">中间内容</div> 的字符串。 find 函数是找第一个这种元素，而 find_all 是找所有

这种元素，返回的是一个字符串组成的列表（可能不是列表，我不确定）。

最后介绍soup的属性： soup.text 是正文， soup["属性"] 是这个soup对应的属性值。

如果文档中存在一些内容，字符串形式和目标很像，但是它不是目标，可以先锁定一个比较大的区域，

再在这个区域中锁定目标。

3. pyppeteer实现模拟用户操作

有时我们不止需要一个网址，可能需要点击网页中的某些内容，还可能需要登录，这都需要手动操作。

还好爬虫也可以安排上这些功能，使用pyppeteer库即可。

i. 自动登录

首先，为了保证能找到目标的输入框和按钮，需要设定好界面的宽度和高度，在打开浏览器时需要新加

这样一个参数： pyp.launch(args = [f'--window-size={width},{height}']) ，其中 width 和 height 是设

置好的变量。打开一个新界面以后，也需要设置宽

高： await page.setViewport({'width': width, 'height': height}) 。

然后进入登录界面： await page.goto(loginUrl) 。寻找元素用这个函

数： element = await page.querySelector("tag名，.类名，或#id名") ，其中参数是对应元素的属性，

用 tag名 ， .类名 或 #id名 都能索引到，也可以递归寻找： #main > form > div.user-login > ··· ，从

高处向下找。输入内容用这个函数： await element.type("输入内容") ，点击按钮用这个函

数： await element.click() 。这就实现了登录。

ii. 等待网页元素出现

有的时候网页加载比较慢，需要等待加载。等待完全加载使用这个函

数： await page.waitForNavigation() ，等待某个元素加载用这个函

数： await page.waitForSelector("#id名，或.类名", timeout=~) 。

iii. 获取元素

大家也发现了，这个pyppeteer完全可以承担提取网页内容的责任，只要用上文提到
的 querySelector() 就好了。有些朋友会问：怎么寻找一个元素的selector？很简单，进入检查模式以
后，右键目标元素-复制-复制Selector即可。

还有一个函数，用于获取正文： element.getProperty("innerText") ，这个函数的返回值是一个对象，

含有 .jsonValue() 这个属性，可以获取正文。

顺便讲一下，获取当前页面的网址可以用 page.url ，或许能用于debug。

五、最后的反反爬技巧

为了当一个伪人，需要保证自己有反应的时间。引入时间库 import time ，在关键的时候可

以 time.sleep(...) 来缓冲，避免由于访问频率过高而被逮捕。

六、尾声

我也是复习完了，需要去练习一下了，如果学到了什么好东西还会补充在本教程。

最后忠告各位，爬虫有风险，一定不要乱爬啊！被抓了也不要说看过我的教程（doge）

